NSM Archive - Silicon Germanium (SiGe) - Thermal properties

SiGe - Silicon Germanium

Thermal properties


Basic parameters

      Remarks Referens
Bulk modulus Si1-xGex  (97.9 - 22.8x) GPa 300 K Schaffler F. et al.(2001)
  Si (x=0) 98 GPa 300 K see Si. Thermal properties
  Ge(x=1) 75 GPa 300 K see Ge. Thermal properties
 
Linear thermal expansion coefficien Si1-xGex  (2.6 + 2.55x) x 10-6 K-1 x <0.85, 300 K Schaffler F. et al.(2001)
  Si1-xGex  (-0.89 + 7.53x) x 10-6 K-1 x >0.85, 300 K  
  Si (x=0) 2.6 x 10-6 K-1 300 K see Si. Thermal properties
  Ge(x=1) 5.9 x 10-6 K-1 300 K see Ge. Thermal properties
 
Debye temperature Si1-xGex  (640 - 266x) K 300 K Schaffler F. et al.(2001)
  Si (x=0) 640 K 300 K see Si. Thermal properties
  Ge(x=1) 374 K 300 K see Ge. Thermal properties
 
Melting point Si1-xGex
   (solidus)
Ts(1412 - 738x + 263x2) oC solidus, 300 K Stohr & Klemm (1954)
  Si1-xGex
  (liquidus)
Tl (1412 - 80x - 395x2) oC liquidus, 300 K Stohr & Klemm (1954)
  Si (x=0) 1412 K 300 K see Si. Thermal properties
  Ge(x=1) 937 K 300 K see Ge. Thermal properties
 
Specific heat Si1-xGex  (19.6 + 2.9x) J mol-1 K-1   Schaffler F. et al.(2001)
  Si (x=0) 19.6 J mol-1 K-1
0.7 J g-1 K-1
300 K
  Ge(x=1) 22.5 J mol-1 K-1
0.31 J g-1 K-1
300 K  
 
Thermal conductivity Si1-xGex  (0.046 + 0.084x) W cm-1 K-1 0.2 < x <0.85; 300 K.
see also Thermal conductivity
vs. composition
Schaffler F. et al.(2001)
  Si (x=0) 1.3 W cm-1 K-1 300 K see Si. Thermal properties
  Ge(x=1) 0.58 W cm-1 K-1 300 K see Ge. Thermal properties
 
Thermal diffusivity Si (x=0) 0.8 cm2 s-1 300 K see Si. Thermal properties
  Ge(x=1) 0.36 cm2 s-1 300 K see Ge. Thermal properties
 
Thermal expansion coefficient Si1-xGex  α = (2.6 + 2.55x) x 10-6 K-1 x < 0.85, 300 K Zhdanova et al. (1967).
  Si1-xGex  α = (7.53 - 0.89x) x 10-6 K-1 x > 0.85, 300 K Zhdanova et al. (1967).


Thermal conductivity

Si1-xGex (undoped alloys). Thermal conductivity vs. composition x.
Stohr et al. (1954)
At 0.25 < x < 0.85
K = 0.046 + 0.084x (W/cmK)
Si1-xGex (alloys). Specific heat vs. temperature. 0.25 < x < 0.85
Inset shows the same dependences in the temperature range from 0 to 50 K.
Wang & Zheng (1995).
Si1-xGex. Thermal expansion coefficient vs. composition x at 300 K
Zhdanova et al. (1967).
Si1-xGex (alloys). Thermal expansion coefficient vs. temperature.
Zhdanova et al. (1967).
At x < 0.85      α = (2.6 + 2.55x) x 10-6 (K-1)
At x > 0.85      α = (7.53 - 0.89x) x 10-6 (K-1)
Si1-xGex (binary alloys). Liquidus-solidus curves
Liquidus: Tl 1412 - 80x - 395x2 (oC).
Solidus: Ts1412 - 738x + 263x2 (oC).
Stohr & Klemm (1954)
Si1-xGex, n-type. Seebeck coefficient vs. electron density at different temperatures.
Closed symbols -- data for the samples doped with P.
Open symbols -- data for the samples doped with As.
1 -- T = 300 K. x = 0.2, 0.3, and 0.4;
2 -- T = 300 K. x = 0.8;
3 -- T = 600 K. x =0.15;
4 -- T = 900 K. x = 0.15.
Dismukes et al. (1964a)
Si1-xGex, p-type. Seebeck coefficient vs. electron density at different temperatures.
Closed symbols -- data for the samples doped with P.
Open symbols -- data for the samples doped with As.
1 -- T = 300 K. x = 0.2, 0.3, and 0.4;
Two symbols below curve 1 represent the data for x == 0.7 and x = 0.8.
2 -- T = 600 K. x = 0.3;
3 -- T = 900 K. x =0.3;
4 -- T = 1200 K. x = 0.3.
Dismukes et al. (1964a)


Lattice constant

   RemarksReferens
Lattice constant a(x)Si1-xGex a=( 5.431 + 0.20x + 0.027x2) A 300 KDismukes et al. (1964b)
see also Si. Lattice constant
see Ge. Lattice constant
Si1-xGex. Lattice constant a vs. composition x
a(x) = 5.431 + 0.20x + 0.027x2 (A)
Dismukes et al. (1964b)