NSM Archive - Silicon Carbide (SiC) - Thermal properties

SiC - Silicon Carbide

Thermal properties


Basic parameters

      Remarks Referens
Bulk modulus  3C-SiC   2.5 x 1012 dyn cm-2 300 K Goldberg et al.(2001)
   4H-SiC 2.2 x 1012 dyn cm-2    
   6H-SiC 2.2 x 1012 dyn cm-2 theoretical estimation
0.97 x 1012 dyn cm-2 (experimental data)
 
Linear thermal expansion coefficient  3C-SiC 2.77 (42) x 10-6 K-1   Slack & Bartram (1975)
 
Debye temperature  3C-SiC   1200 K   Goldberg et al.(2001)
   4H-SiC 1300 K    
   6H-SiC 1200 K    
Melting point  3C-SiC   3103 (40) K p = 35 bar.
Peritectic decomposition temperature
Scace & Slack (1960)
   4H-SiC 3103 ± 40 K at 35 atm Tairov & Tsvetkov (1988)
   6H-SiC 3103 ± 40 K at 35 atm. see also Phase diagram Tairov & Tsvetkov (1988)
 
Specific heat  3C-SiC   The value of 6H-SiC
is usually used
  Goldberg et al.(2001)
   4H-SiC    
   6H-SiC 0.69 J g-1°C -1    
Thermal conductivity  3C-SiC   3.6 W cm-1 °C -1 300 K.
see also Thermal conductivity
vs. temperature
Goldberg et al.(2001)
   4H-SiC 3.7 W cm-1 °C -1    
   6H-SiC 4.9 W cm-1 °C -1    
    ~= 611/(T-115) Wcm-1K-1 100 K < T < 2300 K Nilsson et al. (1997)
 
Thermal diffusivity  3C-SiC   1.6 cm2 s-1   Goldberg et al.(2001)
   4H-SiC 1.7 cm2 s-1    
   6H-SiC 2.2 cm2 s-1    
    ~= 146/(T-207) cm2 s-1 100 K < T < 2300 K Nilsson et al. (1997)
 
Thermal expansion, linear
 3C-SiC   α = 3.8 · 10-6 °C -1 300 K  Goldberg et al.(2001)
    α = 2.47 · 10-6 °C -1 3C-SiC, polycristal Taylor & Jones (1960),
Kern et al. (1969)

    α = 3.8 · 10-6 °C -1 500 K, 3C-SiC, single cristal  
    α = 4.3 · 10-6 °C -1 600 K, 3C-SiC, single cristal  
    α = 4.8 · 10-6 °C -1 900 K, 3C-SiC, single cristal  
    α = 5.5 · 10-6 °C -1 1500-2100 K, 3C-SiC, single cristal  
   6H-SiC α = 1.2 · 10-6 °C -1 100 K  Taylor & Jones (1960),
Kern et al. (1969)
    αa = 4.3 · 10-6 °C -1 (c axis)
αc = 4.7 · 10-6 °C -1 ( ||c axis)
300 K  

Thermal conductivity

3C-SiC, 4H-SiC, 6H-SiC. Thermal conductivity vs. temperature at low temperatures.
1 - 4H-SiC;
2 - 3C-SiC;
3 - 6H-SiC.
Harris (1995a)
6H-SiC. Thermal conductivity (c-axis) vs. temperature for two different samples
Slack (1964).
3C-SiC, 4H-SiC, 6H-SiC. Thermal conductivity vs. temperature.
1 - 4H-SiC;
2 - 3C-SiC;
3 - 6H-SiC.
Morelli et al. (1995a)
6H-SiC. Thermal conductivity vs. temperature at different electron concentrations.
1 - very pure or highly compensated sample;
2 - n = 3.5 x 1016 cm-3;
3 - n = 2.5 x 1016 cm-3;
4 - n = 8.0 x 1017 cm-3;
5 - n = 2.0 x 1017 cm-3;
6 - n = 3.0 x 1018 cm-3;
Morelli et al. (1993)
6H-SiC. Thermal conductivity vs. temperature of different samples.
1 - n = 8.0 x 1015 cm-3 (n -type, 300 K);
2- n = 8.0 x 1015 cm-3 (n -type, 300 K);
3 - n = 1.0 x 1019 cm-3 (n -type, 300 K);
4 - p = 2.0 x 1016 cm-3 (p -type, 300 K);
5 - p = 5.0 x 1018 cm-3 (p -type, 300 K);
6 - p = 5.0 x 1019 cm-3 (p -type, 300 K);
7 - p ~= 1020 cm-3 (p -type, 300 K);
Burgemeister et al. (1964).
6H-SiC. Thermal conductivity vs. temperature at high temperatures.
Solid line -
                  K = 611/(T-115) (Wcm-1K-1)
where T is temperature in degrees K
Nilsson et al. (1997).



6H-SiC, monocrystalline. The specific heat vs. temperature
Nilsson et al. (1997).
6H-SiC. The thermal diffusivity vs. temperature.
Solid line -
                  K = 146/(T-207) cm2 s-1
where T is temperature in degrees K
Nilsson et al. (1997).
3C-SiC. Linear thermal expansion of polycrystal 3C-SiC vs. temperature
Kern et al. (1969)
  Melting Points Tm Remarks Referens
Silicon  1685 K    Tairov & Tsvetkov (1988).
Carbon 4100 K  p = 125 kbar  
 6H-SiC     3103 ± 40 K     at p = 35 atm  
SiC. Phase diagram in Si-C the system.
α is a solid solution of C in Si.
&betta; is a solid solution of Si in C.
Tairov & Tsvetkov (1988).
SiC. Solubility of carbon (C) in silicon (Si).
Marshall (1969).
SiC, SiC2, Si2C. Partial pressures of the various species over SiC in SiC-Si system
Tairov & Tsvetkov (1988).
SiC, SiC2, Si2C. Partial pressures of the various species over SiC in SiC-C system
Tairov & Tsvetkov (1988).
Partial Pressures of the Various Species over SiC (atm) Drowart et al. (1958)]
T(K) Si SiC SiC2 Si2 Si2C Si2C2 Si3 Si2C3 Si3C2
2149 2.1 x 10-5   1.9 x 10-6 3.8 x 10-8 1.4 x 10-6        
2168 2.7 x 10-5   2.5 x 10-6 4.8 x 10-8 1.9 x 10-6        
2181 3.3 x 10-5 2.2 x 10-9 4.2 x 10-6 6.7 x 10-8 2.6 x 10-6        
2196 2.1 x 10-5   4.4 x 10-6 1.1 x 10-7 3.9 x 10-6 8.5 x 10-9     1.5 x 10-8
2230 6.5 x 10-5   6.5 x 10-6 1.6 x 10-7 5.1 x 10-6 1.6 x 10-8 3.2 x 10-9 3.6 x 10-9 1.8 x 10-8
2247 8.3 x 10-5 6.3 x 10-9 1.1 x 10-5 2.1 x 10-7 8.1 x 10-6        
2316 2.0 x 10-4 1.9 x 10-8 3.1 x 10-5 7.0 x 10-7 2.2 x 10-5 7.5 x 10-8 1.6 x 10-8 1.7 x 10-8 8.5 x 10-8


Lattice constant

      Remarks Referens
Lattice constant, 3C-SiC a=4.3596 A  297 K, Debye-Scherrer;
see also Temperature dependence
Taylor & Jones (1960)
  4H-SiC a = 3.0730 A 
b = 10.053 A
300 K Goldberg et al.(2001)
  6H-SiC a = 3.0730 A 
b = 15.118 A
297 K, Debye-Scherrer;
see also Temperature dependence
Taylor & Jones (1960)
3C-SiC. Lattice constant vs. temperature.
Taylor & Jones (1960)
6H-SiC. Lattice constant vs. temperature.
Taylor & Jones (1960)
3C-SiC. Surface microhardness at elevated temperatures vs. temperature.
Using Knoop's pyramid test
Siegle et al. (1997),