NSM Archive - Silicon Carbide (SiC) - Optical properties

SiC - Silicon Carbide

Optical properties


      Remarks Referens
Dielectric constant (static) 3C-SiC ε0 ~= 9.72 300 K Patric & Choyke (1970)
4H-SiC The value of 6H-SiC dielectric
constant is usually used
300 K  
Dielectric constant (static, ordinary direction)  6H-SiC ε0,ort ~= 9.66 300 K Patric & Choyke (1970)
Dielectric constant (static, extraordinary direction) 6H-SiC ε0, || ~= 10.03 300 K Patric & Choyke (1970)
Ratio between the static dielectric constant
(ordinary and extraordinary direction)
6H-SiC ε0,ort / ε0, || ~= 0.9631 300 K  
Dielectric constant (high frequency) 3C-SiC 6.52 300 K Patric & Choyke (1970)
4H-SiC The value of 6H-SiC dielectric
constant is usually used
300 K  
Dielectric constant
(high frequency, ordinary direction)
6H-SiC εort ~= 6.52 300 K Patric & Choyke (1970)
Dielectric constant
(high frequency, extraordinary direction)
6H-SiC ε || ~= 6.70 300 K Patric & Choyke (1970)
 
Infrared refractive index  3C-SiC   ~=2.55 300 K Goldberg et al.(2001)
   4H-SiC   ~=2.55 (c axis)
~=2.59 ( ||c axis)
300 K Goldberg et al.(2001)
   6H-SiC   ~=2.55 (c axis)
~=2.59 ( ||c axis)
300 K Goldberg et al.(2001)
 
Refractive index n(λ) 3C-SiC n(λ)~= 2.55378 + 3.417 x 104·λ-2   300K, 467nm < λ< 691nm Shaffer & Naum (1969)
  4H-SiC n0(λ)~= 2.5610 + 3.4 x 104·λ-2  
ne(λ)~= 2.6041 + 3.75 x 104·λ-2
300K, 467nm < λ< 691nm Shaffer & Naum (1971)
  6H-SiC n0(λ)~= 2.55531 + 3.34 x 104·λ-2
 ne(λ)~= 2.5852 + 3.68 x 104·λ-2
300K, 467nm < λ< 691nm Shaffer & Naum (1971)
      also see Refractive index n vs. wavelength and photon energy Shaffer & Naum (1971)
 
Radiative recombination coefficient 4H-SiC   1.5 x 10-12 cm3 s-1 300 K, estimate Goldberg et al.(2001)
Optical photon energy 3C-SiC   102.8 meV 300 K Goldberg et al.(2001)
4H-SiC   104.2 meV
6H-SiC   104.2 meV
3C-SiC. Phonon dispersion relations
Derived from an eight-parameter bond-bending force model [Kushawa (1982)].
Circles experimental.
[Kushawa (1982)].
3C-SiC. Phonon dispersion relations
Derived from a real-space formalism based on scattering theory.
Circles experimental.
Lee & Joannopoulos (1982)
4H-SiC, 6H-SiC, 15R-SiC, 21R-SiC. Phonon dispersion relationsvs. reduced wavevector.
Along the axial direction
Feldman et al. (1982)
phonon wavenumbers:     Remarks Referens
3C-SiC   νTO(Γ) 796.2(3) cm-1     T=300K,
Raman spectroscopy
Olego et al. (1982a)
  783-796 cm-1     T=300K Karch et al. (1994), Nakashima & Tahara (1989),
Feidman et al. (1968), Olego & Cardona (1982)
  νLO(Γ) 972.2(3) cm-1   T=300K,
Raman spectroscopy
Olego et al. (1982a)
  829 cm-1   T=300K Karch et al. (1994), Nakashima & Tahara (1989),
Feidman et al. (1968), Olego & Cardona (1982)
  νTA(L) 266 cm-1   T=300K Olego et al. (1982b),
Karch et al. (1994)
,
Nakashima & Tahara (1989),
Feidman et al. (1968),
Olego & Cardona (1982)
  261-266 cm-1  
  νLA(L) 610 cm-1  
  νTO(L) 765-766 cm-1      
  νLO(L) 837-838 cm-1      
  νTA(X) 366-373 cm-1      
  νLA(X) 629-640 cm-1      
  νTO(X) 755-761 cm-1      
  νLO(X) 829 cm-1      
main phonon energies:     Remarks Referens
4H-SiC   TA1   46.7 meV       Freitas (1995)
  TA2   51.4 meV
53.4 meV 
     
  LA   76.9 meV
78.8 meV 
     
  TO1   95.0 meV        
  LO   104.0 meV
104.3 meV 
     
         
6H-SiC   TA   36.3 meV     discussion of free exciton replica
in wavelength modulated absorption
Humphreys (1981)
  TA1   46.3 meV       Humphreys (1981) , Freitas (1995)
  TA2   53.5 meV       
  LA   53.3 meV      Humphreys et al. (1981)
  77.0 meV
    Humphreys et al. (1981), Freitas (1995)
  TO1   94.7 meV       Freitas (1995)
  TO2   95.6 meV       Humphreys et al. (1981), Freitas (1995)
  LO   104.2 meV
    Humphreys et al. (1981), Freitas (1995)
  104.7 meV
    Humphreys et al. (1981)

 


3C-SiC. Refractive index n vs. wavelength. 300 K
              n(λ)~= 2.55378 + 3.417 x 104·λ-2  
Shaffer et al. (1971)
2H-SiC, 4H-SiC, 6H-SiC, 15R-SiC. Refractive index vs. wavelength.
Powell (1972)
4H-SiC. Refractive index n vs. wavelength. 300 K
1 - directions c axis (n0(λ));
2 - directions ||c axis (ne(λ)).
          n0(λ)~= 2.5610 + 3.4 x 104·λ-2  
          ne(λ)~= 2.6041 + 3.75 x 104·λ-2
Shaffer et al. (1971)
6H-SiC. Refractive index n vs. wavelength. 300 K
1 - directions c axis (n0(λ));
2 - directions ||c axis (ne(λ)).
          n0(λ)~= 2.55531 + 3.34 x 104·λ-2
             ne(λ)~= 2.5852 + 3.68 x 104·λ-2
Shaffer et al. (1971)
4H-SiC, 6H-SiC. Birefringence (ne - n0) vs. wavelength. 300 K
Shaffer et al. (1971)
3C-SiC. Reflectance R vs. photon energy. 300 K
1 - Logothetidis and Petalas (1996);
2 - Lambrecht et al. (1994)
4H-SiC. Reflectance R vs. photon energy. 300 K
Lambrecht et al. (1993)
6H-SiC. Reflectance R vs. photon energy. 300 K
1 - Logothetidis and Petalas (1996);
2 - Lambrecht et al. (1994)
6H-SiC. Reflectance R vs. wavelength. 300 K
  c axis
Spitzer et al. (1959)
6H-SiC. Reflectance R vs. wavelength. 300 K
  || c axis
Spitzer et al. (1959)
3C-SiC, 4H-SiC, 6H-SiC. The absorption coefficient α1/2 vs. photon energy. T=4.2 K
T=4.2 K
Light-polarized   E c axis
Choyke (1969)
3C-SiC. The absorption coefficient vs. photon energy for different electron concentrations
T=300 K
1 - Nd = 5 x 1016 cm-3 ;
2 - Nd = 7 x 1016 cm-3 .
Solid lines: α = (hν)2 ;
Experimental points - Solangi & Chaudhry (1992)
3C-SiC. The absorption coefficient vs. photon energy for different electron concentrations
T=300 K
1 - relatively pure crystal;
2 - Nd = 1019 cm-3
Patrick & Choyke (1969)
4H-SiC. The absorption coefficient vs. photon energy for different electron concentrations
T=300 K
Low-doped samples.  E c axis.
Sridhara et al. (1998)
6H-SiC. The absorption coefficient vs. photon energy at different temperatures.
1 - T = 293 K (20°C);
2 - T = 573 K (300°C);
3 - T = 873 K (600°C);
4 - T = 1173 K (900°C);
5 - T = 1473 K (1200°C);
6 - T = 1773 K (1500°C).
Groth & Kauer (1961)
6H-SiC. The absorption coefficient vs. photon energy.
T = 300 K
Philipp & Taft (1960)
6H-SiC. The absorption coefficient vs. photon energy.
T = 300 K
Philipp & Taft (1960)
6H-SiC. The absorption coefficient vs. photon energy.
T = 300 K
  c axis and || c axis.
Nd - Na ~= 3.4 x 1018 cm-3
Radovanova (1973)
6H-SiC. The absorption coefficient vs. photon energy at different temperatures
  || c axis, Nd - Na ~= 2.0 x 1018 cm-3.
1 - T = 78 K;
2 - T = 300 K;
3 - T = 390 K;
4 - T = 550 K;
5 - T = 810 K (1200°C);
Dubrovskii et al. (1973)
6H-SiC. The absorption coefficient vs. photon energy at different temperatures
  c axis, Nd - Na ~= 1.0 x 1019 cm-3.
1 - T = 80 K;
2 - T = 300 K;
3 - T = 450 K;
4 - T = 640 K;
5 - T = 930 K;
6 - T = 1100 K;
Dubrovskii & Radovanova (1973)
6H-SiC doped with B. The absorption coefficient vs. photon energy at different temperatures.
1 - T = 300 K;
2 - T = 400 K;
3 - T = 500 K;
4 - T = 600 K;
5 - T = 700 K;
6 - T = 800 K.
Tairov & Tsvetkov (1988)
6H-SiC. The absorption coefficient vs. wavelength at different Nd - Na values.
T = 300 K. c axis
1 - Nd - Na = 1.6 x 1018 cm-3;
2 - Nd - Na = 2.7 x 1018 cm-3;
3 - Nd - Na = 4.0 x 1018 cm-3;
4 - Nd - Na = 4.8 x 1018 cm-3;
5 - Nd - Na = 5.8 x 1018 cm-3;
6 - Nd - Na = 6.3 x 1018 cm-3;
7 - Nd - Na = 1.3 x 1019 cm-3;
8 - Nd - Na = 1.6 x 1019 cm-3;
9 - Nd - Na = 2.6 x 1019 cm-3;
10- Nd - Na = 3.3 x 1019 cm-3;
11- Nd - Na = 4.0 x 1019 cm-3;
Radovanova (1973)
4H-SiC. The infrared absorption coefficient vs. wavelength.
1 - T = 80 K;
2 - T = 300 K.
  E c axis.  Nd - Na = 1017 cm-3
Radovanova (1973)
4H-SiC. The infrared absorption coefficient vs. wavelength.
1 - T = 80 K;
2 - T = 300 K.
  E c axis.  Nd - Na = 1017 cm-3
Dubrovskii & Radovanova (1971)
4H-SiC. Free carrier absorption coefficient vs. wavelength
  c axis and || c axis.
T = 300 KNd - Na = 3 x 1017 cm-3
Radovanova (1973)
6H-SiC. The absorption coefficient vs. temperature at different wavelength λ.
1 - λ = 1.49 µm;
2 - λ = 2.0 µm;
3 - λ = 2.25 µm;
4 - λ = 3.03 µm;
5 - λ = 3.52 µm;
Groth & Kauer (1961)
6H-SiC. The absorption coefficient α vs. wavelength at different temperature.
1 - α~λ2.6;       - T = 293 K (20°C);
2 - α~λ2.2     - T = 673 K (400°C);   
3 - α~λ1.95   - T = 1273 K (1000°C) .
Groth & Kauer (1961)