NSM Archive - Indium Nitride (InN) - Optical properties

InN - Indium Nitride

Optical properties



    Remarks Referens
Dielectric constant (static) 15.3 300 K Zubrilov (2001)
Dielectric constant (static, ordinary direction) ε0,ort = 13.1 300 K Davydov et al. (1999)
Dielectric constant (static, extraordinary direction) ε0, || = 14.4 300 K Davydov et al. (1999)
Ratio between the static dielectric constant
(ordinary and extraordinary direction)
ε0,ort / ε0, || = 0.91 300 K, independed of dielectric constant at high frequency Davydov et al. (1999)
Dielectric constant (high frequency) 8.4 300 K, using the Lyddane-Sachs-Teller relation
0high = ω2LO / ω2TO)
Tansley (1994)
9.3 heavily doped
film, infrared reflectivity
Tyagai et al. (1977)
5.8   Inushima et al. (1999)
Infrared refractive index ~=2.9 300 K Zubrilov (2001)
  2.56 300 K, interference metod; n = 3-1020cm-3
λ = 1.0 μm
Tyagai et al. (1977)
  2.93 λ = 0.82μm  
  3.12 λ = 0.66μm  
    also see Refractive index n vs. wavelength and photon energy  
Radiative recombination coefficient 2.0 x 10-10 cm3 s-1 300 K Zhou et al. (1995)
Optical phonon energy 73 meV 300 K Zubrilov (2001)
phonon wavenumbers:   Remarks Referens
νTO(Γ) 478 cm-1
T=300K.
reflectivity, Kramers-Kronig analysis
Osamura et al. (1975)
νLO(Γ) 694 cm-1    
A1 - LO 586 cm-1 Davydov et al. (1999)
A1 - TO 447 cm-1
E1 - LO 593 cm-1
E1 - TO 476 cm-1
E2 (low) 87 cm-1
E2 (high) 488 cm-1
InN, Wurtzite. Polarized Raman spectra for the nominally un-doped InN layer grown on a (0001) sapphire substrate.
Room-temperature.
Davydov et al. (1999)
InN, Wurtzite. First-order polarized Raman spectra for the nominally undoped InN layer grown on a (1102) sapphire substrate.
Room-temperature.
The inset shows the imaginary part of the dielectric function for A1 (TO) and E1(TO) phonons obtained by the Kramers-Kroning analysis of the IR reflectivity data in different geometries:   E || c[A1(TO)] and E c[A1(TO)].
Davydov et al. (1999)

 


InN, Wurtzite. Refractive index n vs. wavelength. 300 K
Tyagai et al. (1977)
InN, Wurtzite. Refractive index n vs. photon energy . 300 K
Djurisic & Li (1999)
InN, Wurtzite. Reflectance R vs. wavelength. 300 K
Tyagai et al. (1977)
InN, Wurtzite. The absorption coefficient vs. photon energy. 300 K
Samples with free electron concentration:
(1) - 5 x 1018 cm-3 (T = 300° C);
(2) - 3-6 x 1020 cm-3 (T = 300° C);
(3) - 3-6 x 1020 cm-3 (T = 150° C).
Trainor & Rose (1974)
InN, Wurtzite. The squared absorption coefficient versus photon energy
(1) - T = 300 K;       (2) - T = 4.2 K.
Puychevrier & Menoret (1976)
InN, Wurtzite. The squared absorption coefficient versus photon energy
(1) - T = 300 K;       (2) - T = 4.2 K.
Guo & Yoshida (1994)
InN, Wurtzite. Infrared absorption coefficient versus photon energy for the samples with different electron concentrations n.
n: a - 3x 1020 cm-3,
   b - 5 x 1018 cm-3,
   c - 1019 cm-3,
   d - 1018 cm-3,
   e - 5x 1016 cm-3
Tansley & Foley (1986)