# Electrical Properties of Indium Arsenide Antimonide (InAsSb) ## Electrical properties

Basic Parameters
Mobility and Hall Effect
Impact Ionization
Recombination Parameters

### Basic Parameters

 Breakdown field ≈(0.5÷40)·103 V/cm Mobility holes ≤5·102 cm2 V-1s-1 Diffusion coefficient electrons ≤103 cm2/s Diffusion coefficient holes ≤10 cm2/s Electron thermal velocity 7.7·105(1+1.18x-0.91x2) m/s Hole thermal velocity 1.8·105m/s

### Mobility and Hall Effect Electron drift mobility (dashed curves) and Hall mobility (solid curves) versus x for InAs1-xSbx. T=300 K. Electron concentration n=5·1016 cm-3 for all curves. Ionized impurity concentration Ni (cm-3): 1. 5·1016; 2. 1.25·1017; 3. 2.5·1017. Experimental points (triangles full circles, and crosses) are taken from three different papers for n=5·1016 cm-3. (Chattopadhyay et al. (1981)) Squares are experimental results for n=5·1015 cm-3 (Tsukamoto et al. (1990)). Electron drift mobility of InAs1-xSbx versus x at 77K. Ionized impurity concentration (cm-3): 1. 5·1014; 2. 1015; 3. 5·1015; 4. 1016; 5. 5·1016; (Chin et al. (1992)). Temperature dependence of electron mobility for InAs1-xSbx. Solid line represents theoretical calculation. A dislocation density of 1.5·108 cm-2 and a compensation ratio 0.5 are included. Open triangles: x=0.78 Full circles: x=0.76 n=1017 cm-3 (Egan et al. (1994)). Electron mobility versus electron concentration n=Nd - Na with series of compensation ratios θ=Na/Nd for x=0.6. T=77 K. (Chin et al. (1992)). Electron mobility versus electron concentration n=Nd - Na with series of compensation ratios θ=Na/Nd for x=0.9. T=77 K. (Chin et al. (1992)). Hole Hall mobility versus temperature for different acceptor densities. x=0 (InAs). Hole concentration at 300K po (cm-3): 1. 5.7·1016; 2. 2.6·1017; 3. 4.2·1017; 4. 1.3·1018. (Kesamanly et al. (1968)). Hole Hall mobility versus temperature for different hole concentration. x=1 (InSb). po (cm-3): 1. 8·1014; 2. 3.15·1018; 3. 2.5·1019. (Zimpel et al. (1989) and Filipchenko and Bolshakov (1976)). Hole mobility versus hole concentration. x=1 (InSb) 1. - 77 K (Filipchenko and Bolshakov (1976)), 2. - 290 K (Willey (1975)).

### Impact Ionization The dependences of ionization rates for electrons (α)and holes (β) versus 1/F. T=77 K. α1, β1 - for x=0 (InAs). (Mikhailova et al. (1976)). α2, β2 - for x=0.12. (Matveev et al. (1979)).

#### Parametrizations of the electron and hole ionization coefficients. T=77 K.

For electrons: x αo (cm-1) Fno (V cm-1) 0 1.8·105 1.6·105 0.12 0.7·106 1.5·106
For holes: x βo (cm-1) Fpo (V cm-1) 0 1.5·1054.5·104 6·105 1.75·105

### Recombination Parameter Carrier lifetime in intrinsic InAs1-xSbx versus x (for Auger recombination). T=300 K. (Rogalski and Orman(1985)). Dependence of carrier lifetime on normalized doping concentration for x=0 (InAs). T=300 K ni is the intrinsic concentration. Dashed lines represent radiative lifetimes. Solid lines represent Auger recombination lifetimes for different components of Auger processes. Symbols represent the experimental data. (Rogalski and Orman (1985)). Dependence of carrier lifetime on normalized doping concentration for x=0.65. T=300 K ni is the intrinsic concentration. Dashed lines represent radiative lifetimes. Solid lines represent Auger recombination lifetimes for different components of Auger processes. Symbols represent the experimental data. (Rogalski and Orman (1985)). Dependence of carrier lifetime on normalized doping concentration for x=1 (InSb). T=300 K ni is the intrinsic concentration. Dashed lines represent radiative lifetimes. Solid lines represent Auger recombination lifetimes for different components of Auger processes. Symbols represent the experimental data. (Rogalski and Orman (1985)).