Electrical properties of Gallium Antimonide (GaSb)

Electrical properties
Basic ParametersMobility and Hall Effect
Transport Properties in High Electric Fields
Impact Ionization
Recombination Parameters
Basic Parameters
Breakdown field | ≈5·104 |
Mobility electrons | ≤ 3000 cm2 V-1 s-1 |
Mobility holes | ≤ 1000 cm2 V-1 s-1 |
Diffusion coefficient electrons | ≤ 75 cm2/s |
Diffusion coefficient holes | ≤ 25 cm2/s |
Electron thermal velocity | 5.8·105 m/s |
Hole thermal velocity | 2.1·105 m/s |
Mobility and Hall Effect
![]() |
Electron Hall mobility versus temperature for different doping levels. 1. Nd= 1.7·1018 cm-3 2. Nd= 2.8·1017 cm-3 Broken curves represent the experimental data. Continuous curves represent theoretical calculations. (Mathur and Jain (1979)). |
![]() |
Electron Hall mobility versus electron concentration no. T=77 K. Open circles represent measurements with a group of samples having approximately the same residual acceptor concentrations Na. Full symbols:specimens with lower residual acceptor concentrations. Solid lines represent the theoretical calculations for different values of compensating acceptor densities - either singly (Na-) or doubly (Na--) ionized. 1. Na- = 1.2·1017 or Na-- = 0.4·1017 cm-3 2. Na- =2.85·1017 or Na-- =0.95·1017 cm-3 3. Na- = 4.5·1017 or Na-- = 1.5·1017 cm-3 (Baxter et al. (1967)). |
![]() |
Hole Hall mobility versus temperature at different compensation levels. 1. Na= 1.39·1017 cm-3; Nd= 9·1015 cm-3; 2. Na= 1.3·1017 cm-3; Nd= 9.5·1016 cm-3; 3. Na= 1.1·1017cm-3; Nd= 9.5·1016 cm-3 (Nakashima (1981)). |
![]() |
Temperature dependence of hole Hall mobility. MBE technique. Hole concentration at 300 K: 1. - 2.28·1016 cm-3; 2. - 1.9·1019 cm-3. (Johnson et al. (1988)). |
![]() |
The hole Hall mobility versus hole concentration, 300 K. Experimental data are taken from five different papers (Wiley (1975)). |
Transport Properties in High Electric Fields
![]() |
Calculated field dependence of the electron drift velocity, 300 K. (Ikoma et al. (1980)). |
![]() |
Calculated (solid) end experimental (points) current density dependencies versus the electric field, 300 K. (Jantsch and Heinrich (1971)). |
![]() |
Fraction of electrons in Γ, L, X valleys as a function of electric field,300 K n=6.8·1016 cm-3 (Jantsch and Heinrich (1971)). |
![]() |
Electron temperature as a function of the electric field, T=77 K. full and open circle - experimental data curve are calculated (Jantsch and Heinrich (1971)). |
Impact Ionization
![]() |
The dependences of αi and βi> versus 1/F. T=77 K Open symbols : F (111). Filled symbols : F (100). (Zhingarev et al. (1981)). |
![]() |
The dependences of αi and βi versus 1/F). T=300 K F (100). (Hildebrand et al. (1980)). |
Recombination Parameters
![]() |
Radiative lifetime versus donor concentration, T =77 K, GaSb(Te). To extract these dependences from experimental data the values of internal quantum efficiency η were taken: open circles η=0.8; filled circles η=1; (Agaev et al. (1984)). |
![]() |
Nonradiative lifetime versus donor concentrations, T =77K, GaSb(Te). open circles η= 0.8; filled circles η= 1; (Agaev et al. [1984]). |
![]() |
Electron radiative (triangles) and nonradiative (squares) lifetime versus acceptor concentration, p-GaSb,
T=77 K. (Titkov et al. (1986)). |
![]() |
Electron lifetime versus temperature at different acceptor concentrations. Na (cm-3): 1. 5·1018; 2. 2.2·1019; 3. 3.5·1019. (Titkov et al. (1986)). |
Radiative recombination coefficient | ~10-10 cm3 s-1 |
Auger coefficient | |
77K |
2·10-29 cm6s-1 |
300 K |
5·10-30 cm6s-1 |