NSM Archive - Gallium Nitride (GaN) - Mechanical Properties, Elastic Constants, Lattice Vibrations

GaN - Gallium Nitride

Mechanical Properties, Elastic Constants, Lattice Vibrations

Basic Parameters
Elastic Constants
Acoustic Wave Speeds
Phonon Frequencies
Frequencies and Symmetries of the Strongest Modes

Basic Parameters


    Remarks Referens
Density 6.15 g cm-3 300 K Bougrov et al. (2001)
Surface microhardness 1200 - 1700 kg mm-2 300 K, using Knoop's pyramid test Nikolaev et al. (1998)
see also Drory et al. (1996)


Elastic constants at 300 K.

Wurtzite GaN. Elastic constants at 300 K.
C11 390 ±15 GPa Polian et al. (1996)
see also Wright (1997)
C12 145 ± 20 GPa
C13 106 ± 20 GPa
C33 398 ± 20 GPa
C44 105 ± 10 GPa
C11 29.6(1.8) 1011 dyncm -2 calculated from the mean square displacement
of the lattice atoms measured by X-ray diffraction
Madelung (1991)
C12 13.0(1.1) 1011 dyncm -2
C13 15.8(0.6) 1011 dyncm -2
C33 26.7(1.8) 1011 dyncm -2
C44 2.41 (20) 1011 dyncm -2
Zinc Blende GaN. Elastic constants at 300 K.
C11 293 GPa Wright (1997)
C12 159GPa
C44 155 GPa

Wurtzite GaN. Bulk modulus (compressibility-1) For T = 300 K
Bs = [ C33(C11 + C11) - 2(C13)2] x [C11+ C12-4C13+ 2C33 ]-1 Bs = 210 ± 10 GPa

Zinc Blende GaN. Bulk modulus (compressibility-1) For T = 300 K
Bs=(C11+2C12)/3 Bs = 204 GPa
Anisotropy factor  
C'=(C11-C12)/2 A = 0.43
Shear modulus  
C'=(C11-C12)/2 C' = 67GPa
[100] Young's modulus  
Y0=(C11+2C12)·(C11-C12)/(C11+C12) Y0= 181 GPa
[100] Poisson ratio  
σo=C12/(C11+C12) σo = 0.352

Acoustic Wave Speeds

Zinc Blende crystal structure
Wave propagation direction Wave character Expression for wave speed Wave speed
(in units of 105 cm/s)
[100] VL (longitudinal) (C11/ρ )1/2 6.9
VT (transverse) (C44/ρ )1/2 5.02
[110] Vl [(C11+Cl2+2C44)/2ρ ]1/2 7.87
Vt|| Vt||=VT= (C44/ρ)1/2 5.02
Vt [(C11-C12)/2ρ]1/2 3.3
[111] Vl' [(C11+2C12+4C44)/3ρ ]1/2 8.17
Vt' [(C11-C12+C44)/3ρ ]1/2 3.96
Wurtzite crystal structure
Wave propagation direction Wave character Expression for wave speed Wave speed
(in units of 105 cm/s)
[100] VL (longitudinal) (C11/ρ )1/2 7.96
VT (transverse, polarization along [001]) (C44/ρ )1/2 4.13
VT (transverse, polarization along [010]) ((C11-C12)/2ρ )1/2 6.31
[001] VL (longitudinal) (C33/ρ )1/2 8.04
VT (transverse ) (C44/ρ )1/2 4.13
The cristalografic direction you can see part Band structure
For details see Truell R. et al. (1969)

Phonon frequencies

Wurtzite crystal structure
A1 - LO 710-735 cm-1 Siegle et al. (1997);
Akasaki & Amano (1994);
Karch et al. (1998);

Zi et al. (1996)
A1 - TO 533-534 cm-1
E1 - LO 741-742 cm-1
E1 - TO 556-559 cm-1
E2 (low) 143-146 cm-1
E2 (high) 560-579 cm-1
phonon
wavenumbers
:
  Remarks Referens
νA1(TO||) 533 cm-1 T=300K; Raman spectroscopy Manchon et al.(1970)
νE1(TO) 559 cm-1 T=300K; Raman spectroscopy Lemos et al.(1972)
νE1(LO) 746 cm-1 T=300K;
Kramers-Kronig analysis of infrared reflectivity
Barker & Ilegems (1973)
νA1(LO) 744 cm-1 T=300K;
Kramers-Kronig analysis of infrared reflectivity
Barker & Ilegems (1973)
GaN, Wurtzite. Calculated dispersion curves for acoustic and optical branch phonons.
Siegle et al. (1997),
Zinc Blende crystal structure
LO (G) 748 cm-1           LO (L) 675 cm-1 Zi et al. (1996)
TO (G) 562 cm-1   TO (L) 554 cm-1
LO (X) 639 cm-1       LA (L) 296 cm-1
TO (X) 558 cm-1       TA (L) 144 cm-1
LA (X) 286 cm-1          
TA (X) 207 cm-1          
GaN, Zinc Blende (cubic). Calculated dispersion curves for acoustic and optical branch phonons.
Zi et al. (1996),

Frequencies and Symmetries of the Strongest Modes

Frequencies and Symmetries of the Strongest Modes Found in the Second-Order Raman Spectra of Hexagonal GaN and Their Assignments [Siegle et al. (1997)].
Frequency
(cm-1)
Symmetry Process Point in the BZ
317 cm-1 A1 Acoustic, overtone H
410 cm-1 A1 Acoustic, overtone A,K
420 cm-1 A1, E2 Acoustic, overtone M
533 cm-1 A1 First-order process Γ = A1(TO)
560 cm-1 E1 First-order process Γ = E1(TO)
569 cm-1 E2 First-order process Γ = E2(high)
640 cm-1 A1 Overtone Γ = [B]2, L
735 cm-1 A1 First-order process Γ = A1(LO)
742 cm-1 E1 First-order process Γ = E1(LO)
855 cm-1 A1, E1, E2 Acoustic-optical combination  
915 cm-1 A1 Acoustic-optical combination  
1000 cm-1 A1, (E2) Acoustic-optical combination  
1150 cm-1 A1 Optical overtone  
1280 cm-1 A1, (E1) Optical combination  
1289 cm-1 E2 Optical combination  
1313 cm-1 A1, (E1, E2) Optical combination  
1385 cm-1 A1 Optical overtone A,K
1465 cm-1 A1 Optical overtone Γ =A1(LO)2
Cutoff 1495 cm-1 A1 , E2 Optical overtone Γ = E1(LO)2