NSM Archive - Gallium Indium Arsenide Antimonide (GaInAsSb) - Band structure

Band structure and carrier concentration
Basic ParametersBand structure
Intrinsic carrier concentration
Effective Density of States in the Conduction and Valence Band
Temperature Dependences
Dependences on Hydrostatic Pressure
Band Discontinuities at Heterointerfaces
Effective Masses and Density of States
Donors and Acceptors
Basic Parameters for GaxIn1-xAsySb1-y
Zinc Blende crystal structure
Remarks | Referens | ||
Energy gaps, Eg |
(0.29 -0.65x+0.6x2) eV | 300 K; compositions lattice-matched to GaSb. |
Mikhailova M.P. (1999) |
(0.36 -0.23x+0.54x2) eV | 300 K; compositions lattice-matched to InAs. |
||
Electron affinity | (4.87 -0.81x) eV | 300 K; compositions lattice-matched to GaSb. |
|
(4.9 -0.83x) eV | 300 K; compositions lattice-matched to InAs. |
||
Conduction band | |||
Energy separation between X valley and top of the valence band EX |
see Energy separations | 300 K; compositions lattice-matched to GaSb and InAs. |
Mikhailova M.P. (1999) |
Energy separation between L valley and top of the valence band EL |
see Energy separations | 300 K; compositions lattice-matched to GaSb and InAs. |
|
Effective conduction band density of states | 2.5x1019 (0.022+0.03x -0.012x2)3/2 cm-3 | 300 K; compositions lattice-matched to GaSb. |
|
2.5x1019 (0.023+0.032x -0.012x2)3/2 cm-3 | 300 K; compositions lattice-matched to InAs. |
||
Valence band | |||
Energy separation of spin-orbital splitting Eso | 300 K; compositions lattice-matched to GaSb. |
Mikhailova M.P. (1999) | |
Effective valence band density of states | 2.5x1019 (0.41+0.16x +0.23x2) 3/2 cm-3 | 300 K; compositions lattice-matched to GaSb. |
|
2.5x1019 (0.41+0.14x +0.23x2) 3/2 cm-3 | 300 K; compositions lattice-matched to InAs. |
||
Intrinsic carrier concentration | *** cm-3 |
300 K | |
Band structure for GaxIn1-xAsySb1-y
![]() |
GaxIn1-xAsySb1-y (zinc
blende, cubic). Band structure of alloys lattice-matched to InP. Important minima of the conduction band and maxima of the valence band.. For details see Mikhailova M.P. (1999) . |
![]() |
GaxIn1-xAsySb1-y. Energy
gap Eg of vs. lattice constant Yakovlev et al.(1988) |
![]() |
GaxIn1-xAsySb1-y. Energy
gap Eg of vs. x for lattice-matched to GaSb. Experimental points are taken from five different source. Arrows show region of miscibility gap. 1 - T= 300 K; 2 - T= 77K. Mikhailova and Titkov (1994) |
![]() |
GaxIn1-xAsySb1-y. Energy
separations between G , L and X condition band minima and top of the valence
band vs. composition parameter x for lattice-matched to GaSb. Adachi (1987) |
![]() |
GaxIn1-xAsySb1-y. Energy
separations between G , L and X condition band minima and top of the valence
band vs. composition parameter x for lattice-matched to InAs. Adachi (1987) |
![]() |
GaxIn1-xAsySb1-y. Energy of
spin-orbital splitting Eso vs. composition parameter x for GaInAsSb
lattice-matched to GaSb. Tournie (1990) |
![]() |
GaxIn1-xAsySb1-y. Energy
gap Eg of vs. x for lattice-matched to InAs. 1 - T= 300 K; 2 - T= 77K. Voronina et al.(1991,a) |
For GaxIn1-xAsySb1-y compositions lattice-matched to GaSb there is a miscibility gap for 0.25<x<0.75 with a critical temperature estimated to be 1467oC
(Cherng et al.(1986))
For GaxIn1-xAsySb1-y compositions lattice-matched to GaSb :
Eg ~= 0.725x +0.290(1-x) -0.6x(1-x) (eV) | (300K) | Karouta et al.(1987) |
Eg ~= 0.801x +0.354(1-x) -0.6x(1-x) (eV) | (77K) | |
where T is temperature in degrees K |
For GaxIn1-xAsySb1-y compositions lattice-matched to InAs :
Eg ~= 0.36x -0.23x +0.54x2 (eV) | (300K) | Karouta et al.(1987) |
Eg ~= 0.41x -0.29x +0.66x2 (eV) | (77K) | |
where T is temperature in degrees K |
![]() |
Brillouin zone of the face centered cubic lattice, the Bravais lattice of the diamond and zincblende structures. |
![]() |
Brillouin zone of the hexagonal lattice. |
Temperature Dependences
The energy gap versus temperature for GaxIn1-xAsyP1-yGaSb (x=1, y=0) | Eg ~= 0.813 - 3.78·10-4xT2/(T+94) (eV) | 0 < T < 300 | Wu and Chen (1992) |
InAs (x=0, y=1) | Eg = 0.415 - 2.76·10-4xT2/(T+83) (eV) | Fang et al. (1990) | |
Ga0.07In0.93As0.88Sb0.12 | Eg ~= 0.378 - 4.27·10-4xT2/(T+288) (eV) | Gong et al. (1994) | |
where T is temperature in degrees K |
Lasing wavelength λ0
Intrinsic carrier concentration:
ni = (Nc·Nv)1/2exp(-Eg/(2kBT))![]() |
GaxIn1-xAsySb1-y. Intrinsic carrier
concentration vs. temperature for GaxIn1-xAsySb1-y
alloys lattice-matched to GaSb. 1 -- x= 0; 2 -- x= 0.2; 3 -- x= 0.8; 3 -- x= 1.0. Mikhailova M.P. (1999) |
![]() |
GaxIn1-xAsySb1-y. Intrinsic carrier
concentration vs. temperature for GaxIn1-xAsySb1-y
alloys lattice-matched to InAs. 1 -- x= 0; 2 -- x= 0.2; 3 -- x= 0.8; 3 -- x= 1.0. Mikhailova M.P. (1999) |
Effective density of states in the conduction band: Nc
Nc ~= 4.82 x 1015 · (mΓ/m0)3/2T3/2 (cm-3) ~= 4.82 x 1015 · (0.022 +0.03x -0.012x2)3/2 T3/2 (cm-3) :(for GaInAsSb alloys lattice-matched to GaSb)
Nc ~= 4.82 x 1015 · (mΓ/m0)3/2T3/2 (cm-3) ~= 4.82 x 1015 · (0.023 +0.032x -0.012x2)3/2 T3/2 (cm-3) :
(for GaInAsSb alloys lattice-matched to InAs)
Effective density of states in the valence band: Nv
Nv ~= 4.82 x 1015 · (mh/m0)3/2 T3/2 (cm-3)= 4.82 x 1015 · (0.41 +0.16x +0.23x2)3/2 T3/2 (cm-3) :(for GaInAsSb alloys lattice-matched to GaSb)
Nv ~= 4.82 x 1015 · (mh/m0)3/2 T3/2 (cm-3)= 4.82 x 1015 · (0.41 +0.14x +0.23x2)3/2 T3/2 (cm-3) :
(for GaInAsSb alloys lattice-matched to InAs)
Dependence on Hydrostatic Pressure
Band Discontinuities at Heterointerfaces
at GaInAsSb/GaSb and GaInAsSb/InAs heterojunctions.![]() |
GaxIn1-xAsySb1-y. Valence
band discontinuity offset ΔEv vs. concentration
x for lattice-matched GaxIn1-xAsySb1-y/GaSb heterostructure. Mebarki et al. (1993) |
![]() |
GaxIn1-xAsySb1-y. Valence
band discontinuity offset ΔEv vs. concentration
x for lattice-matched GaxIn1-xAsySb1-y/InAs heterostructure. Nakao et al. (1984) |
![]() |
GaxIn1-xAsySb1-y. Conduction
band discontinuity offset ΔEc vs. concentration
x for lattice-matched GaxIn1-xAsySb1-y/GaSb heterostructure. Mikhailova M.P. & Titkov (1994) |
Effective Masses and Density of States:
Electrons
Effective Electron Masses | Remarks | Referens | |
Effective electron mass me | 0.022+0.03x -0.012x2 mo | 300K; for GaInAsSb lattice-matched to GaSb | Mikhailova M.P. (1999) |
0.023+0.032x -0.012x2 mo | 300K; for GaInAsSb lattice-matched to InAs |
Holes
Remarks | Referens | ||
Effective mass of density of states mv | mv ~= 0.41 +0.16x +0.023x2 mo | 300K; for GaInAsSb lattice-matched to GaSb | Mikhailova M.P. (1999) |
mv ~= 0.41 +0.14x +0.023x2 mo | 300K; for GaInAsSb lattice-matched to InAs |
Donors and Acceptors
Undoped GaxIn1-xAsySb1-y compositions ( 0 < x < 0.2 ) have the conductivity of p-type .Three native acceptor traps have been observed for these compositions :
Et -Ev 0.01 eV
(Ec -Ev) ~= 0.03--0.035 eV
(Et -Ev) ~= 0.07 eV
Undoped GaxIn1-xAsySb1-y compositions ( 0.76 <x < 1 ) have the conductivity of n-type.
Ionization energies of Shallow Donors |
Remarks | |||
Te (donor) | Ec -Et | ~ 5x10-3 eV |
GaxIn1-xAsySb1-y (0 < x <0.2) |
Baranov et al.(1990), Voronina et al.(1991,b) |
Ec -Et | 0.04 -- 0.05 eV |
GaxIn1-xAsySb1-y (0 < x <0.2) |
Baranov et al.(1990), Voronina et al.(1991,b) | |
Ec -Et | 0.09 -- 0.1 eV |
GaxIn1-xAsySb1-y (0.8 < x) |
Voronina et al.(1991,a) | |
Ionization energies of Shallow Acceptor |
||||
Ge, Cd (acceptor) |
Et -Ev | ~ 0.01 eV |
GaxIn1-xAsySb1-y (0 < x <0.2) |
Baranov et al.(1990), Voronina et al.(1991,b) |
Ge +Vac(acceptor) | Et -Ev | ~ 0.017 eV |
GaxIn1-xAsySb1-y (0 < x <0.2) |
Baranov et al.(1990), Voronina et al.(1991,b) |
Cd +Vac (acceptor) | Et -Ev (acceptor) | ~ 0.017 eV |
GaxIn1-xAsySb1-y (0 < x <0.2) |
Baranov et al.(1990), Voronina et al.(1991,b) |
Zn (acceptor) |
Et -Ev | ~ 0.1 -- 0.15 eV |
GaxIn1-xAsySb1-y (0 < x <0.2) |
Baranov et al.(1990), Voronina et al.(1991,b) |
Mn |
Et -Ev | ~ 0.02 -- 0.25 eV |
GaxIn1-xAsySb1-y (0.8 < x) |
Voronina et al.(1991,a) |