NSM Archive - Gallium Indium Arsenide Antimonide (GaInAsSb) - Band structure

GaInAsSb - Gallium Indium Arsenide Antimonide

Band structure and carrier concentration

Basic Parameters
Band structure
Intrinsic carrier concentration
Effective Density of States in the Conduction and Valence Band
Temperature Dependences
Dependences on Hydrostatic Pressure
Band Discontinuities at Heterointerfaces
Effective Masses and Density of States
Donors and Acceptors

Basic Parameters for GaxIn1-xAsySb1-y

Zinc Blende crystal structure

Remarks Referens
Energy gaps, Eg
(0.29 -0.65x+0.6x2) eV 300 K; compositions lattice-matched
to GaSb.
Mikhailova M.P. (1999)

(0.36 -0.23x+0.54x2) eV 300 K; compositions lattice-matched
to InAs.

 
Electron affinity (4.87 -0.81x) eV 300 K; compositions lattice-matched
to GaSb.
 
  (4.9 -0.83x) eV 300 K; compositions lattice-matched
to InAs.
 
Conduction band      
Energy separation between X valley and
top of the valence band EX
see Energy separations 300 K; compositions lattice-matched
to GaSb and InAs.
Mikhailova M.P. (1999)
Energy separation between L valley and
top of the valence band EL
see Energy separations 300 K; compositions lattice-matched
to GaSb and InAs.
 
Effective conduction band density of states 2.5x1019 (0.022+0.03x -0.012x2)3/2 cm-3 300 K; compositions lattice-matched
to GaSb.
 
  2.5x1019 (0.023+0.032x -0.012x2)3/2 cm-3 300 K; compositions lattice-matched
to InAs.

 
Valence band      
Energy separation of spin-orbital splitting Eso

see Energy of spin-orbital splitting

300 K; compositions lattice-matched
to GaSb.
Mikhailova M.P. (1999)
Effective valence band density of states 2.5x1019 (0.41+0.16x +0.23x2) 3/2 cm-3 300 K; compositions lattice-matched
to GaSb.
 
  2.5x1019 (0.41+0.14x +0.23x2) 3/2 cm-3 300 K; compositions lattice-matched
to InAs.

 
Intrinsic carrier concentration *** cm-3
300 K  

     

Band structure for GaxIn1-xAsySb1-y

GaxIn1-xAsySb1-y (zinc blende, cubic). Band structure of alloys lattice-matched to InP.
Important minima of the conduction band and maxima of the valence band..

For details see Mikhailova M.P. (1999) .
GaxIn1-xAsySb1-y. Energy gap Eg of vs. lattice constant
Yakovlev et al.(1988)
GaxIn1-xAsySb1-y. Energy gap Eg of vs. x for lattice-matched to GaSb.
Experimental points are taken from five different source. Arrows show region of
miscibility gap.
1 - T= 300 K;
2 - T= 77K.
Mikhailova and Titkov (1994)
GaxIn1-xAsySb1-y. Energy separations between G , L and X condition band minima and top of the valence band vs. composition parameter x for lattice-matched to GaSb.
Adachi (1987)
GaxIn1-xAsySb1-y. Energy separations between G , L and X condition band minima and top of the valence band vs. composition parameter x for lattice-matched to InAs.
Adachi (1987)
GaxIn1-xAsySb1-y. Energy of spin-orbital splitting Eso vs. composition parameter x for GaInAsSb lattice-matched to GaSb.
Tournie (1990)
GaxIn1-xAsySb1-y. Energy gap Eg of vs. x for lattice-matched to InAs.
1 - T= 300 K;
2 - T= 77K.
Voronina et al.(1991,a)
Within a whole range of the compositions the is a direct gap semiconductor.
For GaxIn1-xAsySb1-y compositions lattice-matched to GaSb there is a miscibility gap for 0.25<x<0.75 with a critical temperature estimated to be 1467oC
(Cherng et al.(1986))
For GaxIn1-xAsySb1-y compositions lattice-matched to GaSb :
 Eg ~= 0.725x +0.290(1-x) -0.6x(1-x) (eV)  (300K) Karouta et al.(1987)
 Eg ~= 0.801x +0.354(1-x) -0.6x(1-x) (eV)  (77K)  
where T is temperature in degrees K    

For GaxIn1-xAsySb1-y compositions lattice-matched to InAs :
 Eg ~= 0.36x -0.23x +0.54x2 (eV)  (300K) Karouta et al.(1987)
 Eg ~= 0.41x -0.29x +0.66x2 (eV)  (77K)  
where T is temperature in degrees K    
Brillouin zone of the face centered cubic lattice, the Bravais lattice of the diamond and zincblende structures.
Brillouin zone of the hexagonal lattice.

Temperature Dependences

The energy gap versus temperature for GaxIn1-xAsyP1-y
 GaSb (x=1, y=0)  Eg ~= 0.813 - 3.78·10-4xT2/(T+94) (eV)  0 < T < 300 Wu and Chen (1992)
 InAs (x=0, y=1)  Eg = 0.415 - 2.76·10-4xT2/(T+83) (eV)   Fang et al. (1990)
Ga0.07In0.93As0.88Sb0.12  Eg ~= 0.378 - 4.27·10-4xT2/(T+288) (eV)   Gong et al. (1994)
  where T is temperature in degrees K    

 



Lasing wavelength λ0

Intrinsic carrier concentration:

ni = (Nc·Nv)1/2exp(-Eg/(2kBT))
GaxIn1-xAsySb1-y. Intrinsic carrier concentration vs. temperature for GaxIn1-xAsySb1-y alloys lattice-matched to GaSb.
1 -- x= 0;
2 -- x= 0.2;
3 -- x= 0.8;
3 -- x= 1.0.
Mikhailova M.P. (1999)
GaxIn1-xAsySb1-y. Intrinsic carrier concentration vs. temperature for GaxIn1-xAsySb1-y alloys lattice-matched to InAs.
1 -- x= 0;
2 -- x= 0.2;
3 -- x= 0.8;
3 -- x= 1.0.
Mikhailova M.P. (1999)


Effective density of states in the conduction band: Nc

Nc ~= 4.82 x 1015 · (mΓ/m0)3/2T3/2 (cm-3) ~= 4.82 x 1015 · (0.022 +0.03x -0.012x2)3/2 T3/2 (cm-3) :
(for GaInAsSb alloys lattice-matched to GaSb)

Nc ~= 4.82 x 1015 · (mΓ/m0)3/2T3/2 (cm-3) ~= 4.82 x 1015 · (0.023 +0.032x -0.012x2)3/2 T3/2 (cm-3) :
(for GaInAsSb alloys lattice-matched to InAs)

Effective density of states in the valence band: Nv

Nv ~= 4.82 x 1015 · (mh/m0)3/2 T3/2 (cm-3)= 4.82 x 1015 · (0.41 +0.16x +0.23x2)3/2 T3/2 (cm-3) :
(for GaInAsSb alloys lattice-matched to GaSb)

Nv ~= 4.82 x 1015 · (mh/m0)3/2 T3/2 (cm-3)= 4.82 x 1015 · (0.41 +0.14x +0.23x2)3/2 T3/2 (cm-3) :
(for GaInAsSb alloys lattice-matched to InAs)

Dependence on Hydrostatic Pressure



Band Discontinuities at Heterointerfaces

at GaInAsSb/GaSb and GaInAsSb/InAs heterojunctions.
GaxIn1-xAsySb1-y. Valence band discontinuity offset ΔEv vs. concentration x
for lattice-matched GaxIn1-xAsySb1-y/GaSb heterostructure.
Mebarki et al. (1993)
GaxIn1-xAsySb1-y. Valence band discontinuity offset ΔEv vs. concentration x
for lattice-matched GaxIn1-xAsySb1-y/InAs heterostructure.
Nakao et al. (1984)
GaxIn1-xAsySb1-y. Conduction band discontinuity offset ΔEc vs. concentration x
for lattice-matched GaxIn1-xAsySb1-y/GaSb heterostructure.
Mikhailova M.P. & Titkov (1994)

Effective Masses and Density of States:

Electrons

Effective Electron Masses   Remarks Referens
 Effective electron mass me 0.022+0.03x -0.012x2 mo 300K; for GaInAsSb lattice-matched to GaSb   Mikhailova M.P. (1999)
  0.023+0.032x -0.012x2 mo 300K; for GaInAsSb lattice-matched to InAs   

Holes

    Remarks Referens
Effective mass of density of states mv mv ~= 0.41 +0.16x +0.023x2 mo 300K; for GaInAsSb lattice-matched to GaSb   Mikhailova M.P. (1999)
  mv ~= 0.41 +0.14x +0.023x2 mo 300K; for GaInAsSb lattice-matched to InAs  

Donors and Acceptors

Undoped GaxIn1-xAsySb1-y compositions ( 0 < x < 0.2 ) have the conductivity of p-type .
Three native acceptor traps have been observed for these compositions :
Et -Ev 0.01 eV
(Ec -Ev) ~= 0.03--0.035 eV
(Et -Ev) ~= 0.07 eV
Undoped GaxIn1-xAsySb1-y compositions ( 0.76 <x < 1 ) have the conductivity of n-type.
Ionization energies of Shallow Donors
    Remarks  
Te     (donor) Ec -Et ~ 5x10-3 eV
GaxIn1-xAsySb1-y (0 < x <0.2)
Baranov et al.(1990), Voronina et al.(1991,b)
  Ec -Et 0.04 -- 0.05 eV
GaxIn1-xAsySb1-y (0 < x <0.2)
Baranov et al.(1990), Voronina et al.(1991,b)
  Ec -Et 0.09 -- 0.1 eV
GaxIn1-xAsySb1-y (0.8 < x)
Voronina et al.(1991,a)
Ionization energies of Shallow Acceptor
       
Ge, Cd   (acceptor)
Et -Ev ~ 0.01 eV
GaxIn1-xAsySb1-y (0 < x <0.2)
Baranov et al.(1990), Voronina et al.(1991,b)
Ge +Vac(acceptor) Et -Ev ~ 0.017 eV
GaxIn1-xAsySb1-y (0 < x <0.2)
Baranov et al.(1990), Voronina et al.(1991,b)
Cd +Vac (acceptor) Et -Ev (acceptor) ~ 0.017 eV
GaxIn1-xAsySb1-y (0 < x <0.2)
Baranov et al.(1990), Voronina et al.(1991,b)
Zn (acceptor)
Et -Ev ~ 0.1 -- 0.15 eV
GaxIn1-xAsySb1-y (0 < x <0.2)
Baranov et al.(1990), Voronina et al.(1991,b)
Mn
Et -Ev ~ 0.02 -- 0.25 eV
GaxIn1-xAsySb1-y (0.8 < x)
Voronina et al.(1991,a)